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ABSTRACT

The identification of surrogate markers is motivated by their potential to make decisions sooner about a treatment effect. However, few methods
have been developed to actually use a surrogate marker to test for a treatment effect in a future study. Most existing methods consider combin-
ing surrogate marker and primary outcome information to test for a treatment effect, rely on fully parametric methods where strict parametric
assumptions are made about the relationship between the surrogate and the outcome, and/or assume the surrogate marker is measured at only
a single time point. Recent work has proposed a nonparametric test for a treatment effect using only surrogate marker information measured at
a single time point by borrowing information learned from a prior study where both the surrogate and primary outcome were measured. In this
paper, we utilize this nonparametric test and propose group sequential procedures that allow for early stopping of treatment effect testing in a
setting where the surrogate marker is measured repeatedly over time. We derive the properties of the correlated surrogate-based nonparametric
test statistics at multiple time points and compute stopping boundaries that allow for early stopping for a significant treatment effect, or for fu-
tility. We examine the performance of our proposed test using a simulation study and illustrate the method using data from two distinct AIDS

clinical trials.

KEYWORDS: clinical trial; futility stopping; group sequential testing; stopping boundaries; surrogate marker.

1 INTRODUCTION

The ultimate promise of surrogate markers is that if they can
be identified, then they can be used to make decisions about a
treatment sooner. A surrogate marker is a measurement that re-
places a primary outcome and is expected to predict the effect
of a treatment (Temple, 1999; FDA, 2023). In studies where
the primary outcome measurement necessitates long follow-up
or is invasive or expensive, surrogate markers may lead to more
timely decisions. Rigorous statistical methods have been devel-
oped to identify valid surrogate markers (Elliott, 2023). How-
ever, far fewer methods have been developed to actually use a
surrogate marker to test for a treatment effect in a future study,
which as mentioned above, is the ultimate goal. This is a partic-
ularly difficult problem to consider when the surrogate marker
is not perfect e.g., it may not capture the entire treatment ef-
fect on the primary outcome. This concept is shown in Figure 1
such that there is a prior study, Study A, where the validity of
the earlier (or less expensive) surrogate marker replacing the pri-
mary (longer term or more expensive) outcome has been exam-
ined. Interest lies in conducting a future study, Study B, and us-
ing only the surrogate marker information to test for a treatment
effect.

Certainly, there is extensive previous work on utilizing a sur-
rogate marker in combination with the primary outcome to test

for a treatment effect. For example, Li et al. (2022) propose
an approach to use both surrogate marker and outcome infor-
mation to adaptively calculate conditional power in a group
sequential trial. When both the primary outcome and surro-
gate marker are time-to-event outcomes, Cook and Farewell
(1996) and Lin (1991) propose a weighted global test statis-
tic in a group sequential trial allowing for the evaluation of
the utility of the potential surrogate endpoint. Under the as-
sumption that the surrogate and outcome are bivariate nor-
mal, Tang et al. (1989) explicitly demonstrates the advantage
of a group sequential test using both endpoints in terms of re-
duced needed sample size. Similarly, within a bivariate normal
framework, Anderer et al. (2022) develop an approach to com-
bine the outcome and surrogate in a Bayesian adaptive design
context.

However, in many settings, the question is not how to combine
the surrogate marker and the primary outcome. Instead, the aim
is to understand how to test for a treatment effect with the sur-
rogate marker measurements only, and thus avoid measuring the
primary outcome. Methods that do address this question tend
to either rely on fully parametric methods where strict paramet-
ric assumptions are made about the relationship between the
surrogate and the outcome or assume the surrogate marker is
measured at only a single time point. For example, Price et al.
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FIGURE 1 Studies A and B: Evaluating a surrogate in Study A and using the surrogate in Study B to test for a treatment effect.

(2018) propose to test for a treatment effect using a defined op-
timal surrogate at a single time point which aims to predict the
primary outcome with estimation via the super-learner and tar-
geted super-learner. Quan et al. (2023) and Saint-Hilary et al.
(2019) proposed methods that use prior information about the
treatment effect on a surrogate to plan a future study under the
assumption that the true effects on the surrogate and primary
outcome are bivariate normal.

Recent work (Parast et al., 2019, 2023) has proposed model-
free procedures to test for a treatment effect using only surro-
gate marker information measured in the future study (Study B)
by borrowing information learned from the prior study (Study
A). Parast etal. (2023) proposed a kernel-based test statistic that
is calculated using surrogate marker measurements from Study
B obtained at a single, earlier time point. However, in practice,
the surrogate marker is often measured repeatedly over time (eg,
every 6 months) during the course of the study and thus, there
is significant interest in applying sequential and group sequen-
tial testing methodology (Jennison and Turnbull, 2000; Bartroff
etal, 2013) to the surrogate setting. In this paper, we build upon
the kernel-based testing framework by proposing group sequen-
tial procedures that allow for early stopping to declare efficacy,
and a version that also allows for the possibility of futility stop-
ping, i.e,, early stopping to declare failure to reject the null hy-
pothesis of no effect. The use of the longitudinal surrogate in
the test statistics prevents them from having the independent
increment structure which simplifies the design of many group
sequential procedures (see Spiessens et al., 2000; Kim and Tsi-
atis, 2020). Instead, we compute the correlation structure of the
surrogate-based nonparametric test statistics and estimate it us-
ing the Study A data. The estimates of the correlation structure
are then used to compute the group sequential procedures’ stop-
ping boundaries. We examine the performance of our proce-
dures using a simulation study and illustrate the method using
data from two distinct AIDS clinical trials.

2 SETTING, NOTATION, AND EXISTING
APPROACH

2.1 Setting and notation
In Figure 2, we expand on Figure 1 to illustrate our setting of in-
terest which has surrogate marker measurements over time. Let
Y denote the continuous primary outcome measured at study
completion in Study A and let S; denote a continuous surro-
gate marker which is measured at multiple time points, t;, j =
1, ..., ], during the study. Without loss of generality, we assume
Y > 0. Let G denote the treatment indicator where treatment is
randomized and G € {0, 1} (ie, treatment vs. control). Our aim
is to use information learned in Study A about the relationship
between the primary outcome, the surrogate marker measure-
ments, and the treatment to test for a treatment effect at an earlier
time point in Study B, such that the duration of follow-up needed
for Study B can be shortened and the primary outcome does not
have to be measured in Study B. We use a subscript L to explic-
itly denote the study and use potential outcomes notation where

each person in Study L has a potential {YL(I), YL(O), Sgi), 552)}
where YL(I) is the outcome under treatment, YL(O) is the outcome

under control, Sgi) is the surrogate at time t; under treatment,

and SEP is the surrogate at time t; under control in Study L. For
individual i in treatment group g in Study L, the observed surro-
gate at time t; is Sy4j;. For individual i in treatment group g in
Study A, the observed outcome will be denoted as Yy; the out-
come in Study B is never measured. Let 1, denote the number of
individuals in treatment group gin Study L, and n;, = nyo + np;
where ny,/n;, > 0.When feasible, for ease, we will drop the sub-
script L from notation.

Our primary goalis to test for a treatment effect on the primary
outcome in Study B quantified as A = E(YB(I) - YB(O)) =0,
without measuring the primary outcome, Y, in Study B. In the
following sections, we describe an existing kernel-based test for
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FIGURE 2 Studies A and B: Sequential surrogate setting.

atreatment effect in Study B using a surrogate measured at only a
single time t; (Parast et al.,, 2023) and possible naive approaches
to sequential testing (Section 2.2), and then propose a novel ap-
proach to sequentially test for a treatment effect in Study B, when
the surrogate is measured repeatedly over time (Section 3). In
Section 4, we detail our needed assumptions as well as methods
to empirically examine these assumptions.

2.2 Existing approach

Suppose there is only a single time point ¢}, i.e., that the surrogate
marker is measured at only one time point after randomization,
but before the end of the study. Here, we drop the subscript j from

S as it is unnecessary, and denote the potential surrogate as Sig)
and the observed surrogate for personias S o, L = A, Bandg =
0, 1. The goalis to take advantage of information from Study A to
test A = 0 using the surrogate marker measurement only from
Study B. To achieve this goal we first consider using the testing
procedure of Parast et al. (2023 ), described below. Note that A
can be expressed as

A=E (YB“)) _E (YB(O))
= /MBl(s)dFBl(S) - / 1o (s)dEgo(s),

where i, (s) = E(YL(g) |S£g) =3s) and Fg, (s) is the cumulative
distribution function of Ség). Of course, this expression involves

YB(g), which we do not observe. Parast et al. (2023) suggest to
instead focus on

A* = / a0 ($)dEs (s) — / tao()dE(s) (1)

and they refer to A* as an earlier treatment effect because it is
defined before the end of Study B using only (1) the conditional
mean, [Lao(s), from Study A, and (2) the surrogate marker in

Goal: Test for a
treatment effect

Study B i.e., YB(g) does not appear in A*. The motivation for the
exact construction of A* is as follows. The troublesome com-
ponents of A, in terms of trying to examine the treatment ef-

fect earlier, are po(s) and g (s) because these involve YB(g) s
which is not measure until the end of Study B. Suppose, we
simply decided to replace these components with their parallel
components from Study A, i.e., define A* as f ar (s)dEg (s) —
| 1a0(s)dFgo (s). Itis true that this construction could still be re-
ferred to as an earlier treatment effect because it is defined with-
out Y;*'. However, there are two problems with this construc-
tion. First, we would have to assume that jtpo(s) = pa0(s) and
ip1(s) = wai(s); ie., that the conditional mean in each treat-
ment group is transportable between the two studies. Second,
it can be shown that unless S is a perfect surrogate marker, it is
possible that A* > A and in an extreme case where S is a poor
surrogate, A* may erroneously indicate a treatment effect when
in fact, A = 0. It is this second problem that is particularly wor-
risome. It is never the case in practice that we have a perfect sur-
rogate, and the risk of erroneously concluding there is a treat-
ment effect using the surrogate when there is not a treatment
effect on the outcome is not a risk that we are willing to take.
Therefore, we specifically want a A* that can give us some guar-
antee, e.g., that A* is a lower bound on A. The definition in (1)
does guarantee this property. In Web Appendix A, we show that
under our assumptions (see Section 4), A* < A and that when
A = 0 = A* = 0. In addition, we show that a valid test of the
null hypothesis that A* = 0 would also result in a valid test of
the null hypothesis that A = 0 in the sense that the type 1 er-
ror rate is < o. Thus, to test the null hypothesis that A = 0,
one could instead consider testing the null hypothesis that A* =
0. Notably, A* still requires a form of transportability between
the two studies: (po(s) = fao(s) (see Section 4), though this
is less strong than requiring this equality in both treatment
groups.
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In practice, (440 (s) is unknown and furthermore, Study A data
are fixed in this testing framework. By “fixed”, we mean that all
of our probability calculations will condition on Study A data
and n, does not — 00. This is an important point. We specifi-
cally address the situation of designing Study B after Study A has
concluded, and thus, an important statistical assumption made
throughout this paper is that the Study A data is conditioned on,
and hence treated as fixed quantities in the probabilistic calcula-
tions. Therefore, this earlier treatment effect must be defined in a
way that acknowledges and makes explicit this reliance on Study
A; specifically, we define

Ap = / Poao(5) B (s) — / Poao()dEno(s). where (2)

Y Ky (Sa0i — $)Yaoi
Z?iol K, (SAOi - )

is a consistent estimate of f140(s), and A is estimated by

(3)

Hao (S) =

NnB1 NnBo

Ap = ng Z Rao(Sp1i) — ngo Z a0(Sgoi)- (4)
-1 i1

Here, K;,(-) = K(-/h)/h where K(-) is a smooth symmetric
density function with finite support (eg, standard normal den-
sity) and h is a specified bandwidth, which may be data depen-
dent. Note that this estimate only uses S data from Study B (no
Y data from Study B is used or assumed to be measured) and
S,Y data from Study A in group Z = 0 only. To test the null
hypothesis, A = 0, Parast et al. (2023) suggest testing the null
hypothesis: Ag = 0, (based on the properties above regarding
A*) using the Wald-type test statistic Wg = (/ng A £/0z. The
test rejects the null hypothesis when [Wg| > ®~!(1 — a/2).
In Web Appendix B, we provide the form of o%; and discuss the
asymptotic properties of Ag.

To use this existing test in our setting in Figure 2, one could
consider testing Ap = 0 using Wy computed at each time ¢;,
j =1, ..., ], but this would have inflated Type 1 error proba-
bility. To remedy this, one could utilize a Bonferroni correction
where the null hypothesis is rejected at the earliest ¢; such that
[Wg| > @' (1 — «@/(2])). However, one would expect this to
be overly conservative, i.e., have low power. In the next section,
we propose a compromise between these two approaches via
group sequential procedures.

3 GROUP SEQUENTIAL PROCEDURES

Here, we propose a group sequential procedure that allows for
early testing of a treatment effect, derive the properties of the cor-
related surrogate-based nonparametric test statistics at multiple
time points, and develop stopping boundaries that allow for early
stopping for a significant treatment effect or for futility. We as-
sume that in Study A, we have measured the surrogate marker at
time pointst;, j =1, ..., J,where ] > 2 is the maximum num-
ber of interim analyses, and the same time points will be utilized
for measuring the surrogate marker in Study B. Throughout this
section, let [J] := {1,2, ..., ]}

3.1 Group sequential statistic

We will utilize the estimators (3)—(4) but repeatedly calculated
with data from each time point ;. Thus, we first adjust the no-
tation to reflect this. For j € [J], recall that Sp; is the Study L
(L = A, B) surrogate for the ith patient in group g (g =10, 1)
measured at time ¢; and Yy, is the Study A outcome for the ith
patientingroup g (g = 0, 1). For eacht, for any s within the sup-
port of S4¢;j, we define the kernel estimator using Study A data
from time t;:

~ 2 Ki(Sa0ij — $)Yaor
MAOj(S) == iAO !

, and let (s)
i=1 Kh(SAOij - S)

nB1 "Bo

Py 1 ~ 1 —~
A-:—E -S,--——E i(SBoi; 6
Ej o1 MAO;( Bl]) o MAO;( BO]) (6)

be the
(Ag1, Apa, ..

Ay =

estimator of Ap at time f;. Let
., AE])Twhere

Agj = //’IAO]-(s)dFBlj(s) —/ﬁAOj(S)dFBOj(S)s

and F,; (s) is the cumulative distribution function of Spgj- To
reflect the group sequential nature of this set up, we replace the
null hypothesis, A = 0 by

Hp: Ap =0, (7)

the latter denoting the J-dimensional zero vector. We test (7) via
group sequential monitoring of the longitudinal process A =
(A1, Apa, ... Agp)T.

3.2 Covariance and limiting distribution

Conditional on {f{a0j(s)};ey), it can be shown that as
npo, np1 —> 00, the suitably-normalized distribution of
(Ag — Ag) approaches a J-dimensional multivariate nor-
mal random vector with mean zero (see Web Appendix B), and
we recall that A is the zero vector under the null hypothesis (7).
For j, j' € [J], the covariance matrix of Ag has elements

Oy 1= cov(ZEj, KEj/)

ji
1 np1 N 1 NnBo R
= cov| — E MAO;‘(SBU;) - E MAo;(SBOi/),
npr — npo —
i=1 i=1
np1 npo

1 ~ 1 ~
- MHao "(331"’) - Mao "(SBO"’) (8)
gj 7 (Say) = gj 7 (Sao;
1 np1 np1
= nTCOV ZﬁAOj(SBlij)a ZﬁAO;"(SBlij’)
Bl i=1 i=1

1 ngo R npo .
—|— nTCOV <Z I’LAOi(SBOii)’ Z MAO,'/(SBOi}'/) (9)
BO i=1 i=1
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1 np1 . N
= nT Z cov (MAOj(SBlij)’ MAOj’(Sslij’))
Bl =1
nBo

— Zcov 40;(SBoij )+ a0 (Spoij ))

BO i=1

1 ~ —~
= n—COV (/'LAOj(SBllj)s Haoj (5311;" ))
Bl

1 ~ ~
+n—C0V (140;(Spo1}): a0y (Sror;)) » (10)
BO

where terms involving covariances between Spy;; and Sgoij,
which are equal to zero because Spy;; L Spoij as they are from
different treatment groups, are dropped from (8) to (9). Im-
portantly, (10) relies on Study A being conditioned on, as men-
tioned in Section 2.2 and further discussed in Section 7. Taking
j = j in (10) gives the variance

1 . 1 _
= n—VElf(MAo;'(SBu;‘)) + n_VM(MAOj(SBOIj))~
BO

(11)

Let D be the ] x ] diagonal matrix with entries
o' 057 0", and let ¥ = cov(DAg) which
is the J X J covariance matrix with (j, j/) entry equal to
0jj/\/0j;0y; and, consequently, diagonal entries equal to 1.
The null case of the multivariate normal limit mentioned above
is that, under (7),

2 2DA; — Ny(0, 1) (12)

as the ng; — 00, where I'is the ] x J identity matrix. Although
A £ has the multivariate normal limit (12), it does not have the in-
dependent increment structure (Spiessens et al., 2000; Kim and
Tsiatis, 2020) often exploited to simplify group sequential anal-
yses since, for j < j, the distribution of Sg,;  differs in general
from that of S, j, thus so do the distributions of a0 i (Sa1j)
and ﬁAo;‘(SBglj); thus COV(ﬁAOj(SBglj)v ﬁA(}Z’(sB/gy’)) #
Var(i2a0;(Sg1j)) in general, and so cov(Agj, Agj) #
Var(ZEj). In spite of this, in Section 3.3, we provide a way
to compute stopping boundaries for KE utilizing the limiting
normal distribution and the covariance structure (10), which
can be implemented by Monte Carlo simulation.

3.3 Group sequential tests without futility stopping

Replacing the variances in (11) by the corresponding sam-
ple variances, for j € [J] define the variance estimator ;; =

Z‘é—o ":;g E Znt (MAO](SBgt]))Z (Tg Znt ﬁAO; (SBgz]))
of 0;. We consider the group sequential procedure that stops
and rejects the null hypothesis (7) at the first analysis j € [J]
such that

|WE]| > b], where WE] = AEI/‘/EJ’ (13)

and otherwise terminates at the Jth analysis and declares failure
to reject the null hypothesis. The statistics Wg1, Wg,, ..., Wiy
extend the univariate statistic, Wg, to the group sequential

Biometrics, 2024, Vol. 80,No.4 e §

setting. In (13), the b; are pre-determined stopping boundaries;
in general the b; will also depend on ] but we suppress this
to simplify the notation. This test structure does not permit
stopping before the Jth analysis to declare failure to reject the
null hypothesis, known as futility stopping, and in Section 3.4,
we discuss a modification of this procedure that allows futility
stopping. To compute the stopping boundaries b; to achieve ap-
proximately a prescribed type I error probability o, we consider
a set up that includes the popular Pocock (1977), O’Brien-
Fleming (1979), and Wang-Tsiatis (1987) “power family” type
boundaries, although a similar approach can be used for other
families of group sequential boundaries (see Jennison and
Turnbull, 2000). For these families of stopping boundaries, the
bjin (13) are of the form

where Z}- is a known function of j (and J) and b is a constant
determined to satisfy the type I error probability constraint. For
example, for j € [J], the Pocock boundaries use b; = 1, the
O’Brien-Fleming boundaries use Zj = \/]Tj, and the Wang-
Tsiatis boundaries use Ej = (j/J)*~/? for a chosen value of the
power parameter §. The latter includes the Pocock (§ = 1/2)
and O’Brien-Fleming (8 = 0) boundaries as special cases.
These b; are intended for equally space analyses, i.e., analysis
time points satisfy ¢;/t; = j/]. For unequally space analyses,
these functions of j/J should be replaced by t;/1;.

The normal limit (12) still holds when the covariances in (10)
are replaced by any consistent estimators ojyof oy, for j, j' €
[J]. Let Y and D denote the correspondlng matrices with the
ojj replaced by & i) ie, Dis the J x ] diagonal matrix with en-
tries {0 21 and ¥ is the J x J matrix with (j, j') entry equal

to oy /1 /00 7 and diagonal entries equal to 1. Then,

3 ’DA; — Ny(0.1) (15)

under the null. The Wg; in (13) are the entries of the vec-

tor DA, where D is the diagonal matrix with entries {’U\;l/ 2}.

A normal limit analogous to (12) and (15) holds for DA £
3 *DA; — N;(0.1) (16)

under the null, where Y is the variance—covariance matrix ¢ of
DA £, of which ¥ is a consistent estimator. Since the vector DA Ag
of the Wg; has the same asymptotic limit under the null as DA E
when both are suitably standardized, the event (13) has the same
asymptotic probability under the null as the event

X| = b;, where X =(X,...,X)" :=3%"2
and Z~ N;(0,1). (17)

For any stopping boundaries b; of the form (14), moving b; to
the other side of the inequality, (17) becomes | X;| /Z] > b. From
this, we see that choosing b to be the upper-« quantile of the dis-
tribution of
max |X;|/b; (18)
jel]

makes the test (13) approximately level-«.
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Since, in general, the elements X; of X = EI/ZZ in (18) are
not independent, standard tools from order statistics or ex-
treme value theory cannot be used to calculate (18). How-
ever, it can be quickly and accurately computed using Monte
Carlo by simulating a 1arge number B of independent multivari-
ate standardnormals Z(V, . .., Z(®) ~ N;(0, I), settingX¥) =

(Xl(k), Xz(k) X(k))T 270 for all k [B], and tak-
ing b to be the upper-o sample quantile of {max;c(y | X].(1)| /Zj,
max;eq) 1X21/by, ..., maxjep IX71/5,.)

3.4 Group sequential tests with futility stopping

The distribution theory above makes possible a variety of mod-
ifications to the group sequential stopping rule defined above to
allow futility stopping, i.., early stopping before the Jth stage
to declare failure to reject the null. In this section, we describe
one way of doing this with a flexible family of tests known as the
power family of two-sided inner wedge tests; these are general-
izations of stopping rules of Pampallona and Tsiatis (1994) due
to Jennison and Turnbull (2001). Let W), j € [J],beasin (13).
Given stopping boundaries {(a;, b]-)}}-e [7) with

0<a; <bjforal je[J]—1]and a; = b, (19)

a general form of a two-sided test with an inner wedge for futility
stopping stops at the first analysis j € [J] such that

[Wg;| & [a), b)), (20)

rejecting Hg if the outer boundary is crossed |[Wgj| > bj, or
declaring failure to reject the null if the statistic enters the “inner
wedge” [Wgj| < aj. By virtue of the restriction a; = by, the test
is guaranteed to stop at the Jth stage if it has not stopped prior
to that. The power family inner wedge tests (see Jennison and
Turnbull, 2000, p. 118) utilize boundaries of the form

b; =b(j/])* > for jel[]], (21)

{(a+b)(1/f)”2—a(1/])5 Y for o< =Ty
0 for 1=<j<jo,

with constants a, b, §, and jo € [J], the latter denoting the ear-
liest analysis at which it is desired to allow futility stopping.
Choosing

b
b>0, 6<1, and ac (—b, W) (23)

guarantees that the resulting boundaries (21)-(22) will satisfy
(19). In Web Appendix C, we provide a method for calculating
the constants a, bin the boundaries (21)—(22) to achieve an ap-
proximately level-o test.

4 ASSUMPTIONS AND EMPIRICAL
ASSESSMENT

We assume the following for the surrogate marker at each time
ti:
j

(C1) E (YL(O) |S£(:.) = s) isamonotone increasing function of
sforL =A, B;

(c2) E(r"IsY
A, B;
(c3) P(SLI) >5) > P(S(O) > s)forallsforL = A, B.

=5) > E(YL(0)|S$) =s)forallsforL =

Assumptions (C1)-(C3) are not unique to our approach and
parallel those required in general in surrogate marker research
(Wang and Taylor, 2002; Chen et al., 2007; Wu et al., 2011;
VanderWeele, 2013; Parast et al., 2017). Assumption (C1) im-
plies that the surrogate marker is positively related to the time of
the primary outcome, (C2) implies that there is a non-negative
residual treatment effect beyond that on the surrogate marker,
and (C3) implies that there is a non-negative treatment effect on
the surrogate marker. Our testing approach requires the follow-
ing additional set of assumptions for the surrogate marker at each
tj:

(C4) The surrogate captures a reasonably 1arge proportion
of the treatment effect on the primary outcome, de-
scribed below;

(CS) The support of Sl(;;) and Sl(;lj) must be contained within

the support of Sg;) ;
(c6) E(Y(O)ls(o) =5)= E(Y(0)|S(0) =) foralls;
7)) L s(°)|s“) ay® 1L s(”|s£‘j) forL = A, B.

While we don’t require a perfect surrogate, we do need the
surrogate to be useful in some sense of surrogacy where in As-
sumption (C4), we measure surrogacy using the proportion of
the treatment effect on the primary outcome that is explained by
the treatment effect on the surrogate marker (Freedman et al,,
1992; Wang and Taylor, 2002). If the surrogate is weak in the
sense of explaining a low proportion of the treatment effect, we
would expect to have lower power to test for a treatment effect
on the primary outcome. In this paper, we assume that surro-
gate marker validation has been previously completed and there
is some level of agreement clinically and statistically that the S
being considered is a reasonable surrogate. Assumption (C5) is
needed for kernel estimation. Assumptions (C6) means that in
the control groups, the two studies share the same conditional

expectations for Y (*) given SEO) . Though this is certainly a strong
assumption, some strong conditions about the transportability
between Study A and Study B are necessary in order to borrow
information from Study A. If no assumptions about transporta-
bility can be made, it is likely not feasible to borrow informa-
tion from Study A. This assumption is at least only specific to
transportability of the control group conditional means and is
likely reasonable when the control groups are, e.g., usual care or
placebo. Assumption (C7) is needed for identifiability.

It is reasonable to ask whether these assumptions hold and
what happens if they do not hold. These questions have largely
not been addressed in existing work with the exception of recent
work by Elliott et al. (2015) and Shafie Khorassani et al. (2023)
in a meta-analytic framework. Assumptions (C6) and (C7) gen-
erally cannot be empirically explored with observed data be-
cause we do not have the needed quantities i.e,, we only have
Y ® and $® for an individual if they were in group g, and we do
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TABLE 1 Expected stopping time E(T ) and probability P(Rej. Hg ) of rejecting the null hypothesis H, for fixed sample and group sequential
procedures without futility stopping, at most ] = 8 analyses, and nominal level @ = .0S based on 1000 replications of each procedure in each

setting.
Setting 1: no treatment effect Setting 2: treatment effect

Test E(T) (SE) P(Rej. Hg) (SE) E(T) (SE) P(Rej. Hg) (SE)
Fixed sample test 8.000 (.000) .053 (.007) 8.000 (.000) 822 (.012)
GS unadjusted 7.314 (.060) 151 (.011) 5.103 (.073) .874 (.010)
GS Bonferroni 7.921 (.020) .021 (.005) 6.694 (.056) .586 (.016)
Pocock 7.792 (.034) .045 (.007) 6.173 (.065) 723 (.014)
O’Brien-Fleming 7.938 (.012) .054 (.007) 6.609 (.043) .808 (.012)
Wang-Tsiatis (8 = .4) 7.866 (.024) .046 (.007) 6.210 (.058) 762 (.013)

Standard errors SE are in parentheses.

not have any primary outcome measurements, Y, from Study B.
However, Assumptions (C1)—-(CS) can be empirically explored
with available data to some extent. Assumptions (C1)-(C2) can
be explored for Study A, but not for Study B (because we do not
have primary outcome information); (C3) can be examined in
both studies. Assumption (C4) can be explored using only Study
A data, while Assumption (CS) can be explored in both stud-
ies because it involves only the surrogate marker in both stud-
ies. We illustrate assessment of Assumptions (C1)-(CS) in our
data application in Section 6 and specifically point out the re-
sult of misuse of our method if it is used when an assumption is
violated.

5 SIMULATION STUDIES

Here, we present simulation studies of the performance of the
proposed group sequential procedures and compare them with
a fixed sample procedure and two naive group sequential pro-
cedures in two settings: Setting 1 in which there is no treatment
effect and Setting 2 in which there is a treatment effect. The data-
generating mechanisms for these settings as well as additional
simulation results and discussion are provided in Web Appen
dix D. In both settings, the surrogate marker is possibly mea-
sured at ] = 8 times points ti=1,2,...,8 and the primary
outcome is measured at tg = 8. Data generation (for Study B)
and testing procedures are replicated 1000 times in each setting
to estimate the expected stopping time E(T'), where T is the
time point at which the procedure terminates and rejects or de-
clares failure to reject Hg, and the probability P(Rej. Hg) of the
procedure rejecting the null. The results are summarized in Ta-
bles 1 and 2 which contain the operating characteristics of the
proposed group sequential procedures without and with futility
stopping, respectively. Both tables include the fixed sample size
test, which rejects Hg if and only if (13) holds for j =] = 8.
The tables also include two naive group sequential procedures,
denoted by “GS unadjusted” and “GS Bonferonni,” which stop
and reject Hg, at the earliest analysis j such that (13) occurs, with
by = ... = bj = 24/, the upper o /2 standard normal quantile,
in the unadjusted case, and with b; = ... = b; = z,/,/8 in the
Bonferroni-adjusted case. Both of these procedures declare fail-
ure to reject the nullat the ] = 8thanalysisif (13) does not occur
forany j € [J] = [8].

Table 1 shows the performance of the group sequential proce-
dures described in Section 3.3 with Pocock, O’Brien-Fleming,

and Wang-Tsiatis power family boundaries (hereafter abbrevi-
ated P, OF, and WT). These are given by stopping rule (13) with
boundaries of the form (14) with b; = 1, \/]Tj, and (j/])°~1/2
with § = .4 for the P, OF, and WT boundaries, respectively. The
value b in (14) was computed by Monte Carlo as described in
Section 3.3. In Setting 1, there is very little savings in expected
stopping time E(T ) below the maximum value T = ] = 8, re-
flecting that the null is true and none of these procedures in this
setting allow early stopping to declare failure to reject the null.
The P, OF, and WT procedures maintain a type I error proba-
bility close to the nominal level of o = .05, while the GS un-
adjusted procedure has a type I error probability that is more
than three times o« = .0S. In contrast, the GS Bonferroni stop-
ping value of z,/,/8 = 2.734, which is quite conservative, re-
sults in a type I error probability 0f.021. In Setting 2, the P, OF,
and WT procedures provide roughly 1-2 analyses of savings on
average over the fixed sample test, which always takes ] = 8 anal-
yses. The P procedure is the most aggressive in early stopping,
with the OF procedure the least, and the WT procedure in the
middle. The GS unadjusted procedure has the smallest expected
stopping time at 5.103, but this is due to its extreme type I er-
ror probability exceedance in Setting 1. In Setting 2, the powers
of the P, OF, and WT procedures are substantially higher than
the GS Bonferroni procedure, and comparable to but slightly less
than the fixed sample procedure despite their savings in expected
stopping time. Table 2 shows the performance of the group se-
quential procedures that incorporate futility stopping described
in Section 3.4 with § = 1/2,0,and.4, respectively. For these pro-
cedures, futility stopping begins at the jo = 4th analysis. The
values (a, b) in (21)-(22) were computed by Monte Carlo as
described in Section 3.4. The fixed sample and unadjusted and
Bonferroni GS procedures are the same as in Table 1. The P, OF,
and WT procedures with futility stopping show more savings in
E(T) in both Settings 1 and 2, with the P procedure being the
most aggressive in early stopping, followed by the WT and OF
procedures. These show substantial savings over the fixed sam-
ple and naive GS procedures, which do not allow futility stop-
ping, in Setting 1, and even savings over these procedures in Set-
ting 2, with the exception of the GS unadjusted procedure whose
type L error probability is more than 3 times @ = .05. The power
of the P, OF, and WT procedures is higher than the GS Bonfer-
roni procedure, which is conservative in this sense of being un-
derpowered in Setting 2 as well as having a type I error probabil-
ity 0£.021 in Setting 1.
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TABLE 2 Expected stopping time E(T') and probability P(Rej. Hg ) of rejecting the null hypothesis H, for fixed sample and group sequential
procedures with futility stopping beginning at the j, = 4th analysis, at most ] = 8 analyses, and nominal level « = .05 based on 1,000 replica-

tions of each procedure in each setting.

Setting 1: no treatment effect

Setting 2: treatment effect

Test E(T) (SE) P(Rej. Hg) (SE) E(T) (SE) P(Rej. Hg) (SE)
Fixed sample test 8.000 (.000) .053 (.007) 8.000 (.000) .822 (.012)
GS unadjusted 7.314 (.060) 151 (.011) 5.103 (.073) .874 (.010)
GS Bonferroni 7.921 (.020) .021 (.005) 6.694 (.056) .586 (.016)
Pocock 4.756 (.033) .051 (.007) 5.572 (.056) 662 (.015)
O’Brien-Fleming 5.340 (.032) .053 (.007) 5.619 (.040) 706 (.014)
Wang-Tsiatis (§ = .4) 4.908 (.032) .051 (.007) 5.333 (.049) 674 (.015)

Standard errors SE are in parentheses.

6 APPLICATION TO AIDS CLINICAL TRIALS

We illustrate our proposed testing procedure using data from
two randomized clinical trials from the AIDS Clinical Trial
Group (ACTG) Network: ACTG 320 (Study A) and ACTG
193A (Study B). ACTG 320 was a randomized, double-blind
trial among 1156 HIV-infected patients that compared a two-
drug regimen (two nucleoside reverse transcriptase inhibitors
[NRTI]; n = 579) with a three-drug regimen (two NRTTIs plus
indinavir; n = 577) (Hammer et al., 1997). ACTG 193A was a
randomized, double-blind trial among 1,313 HIV-infected pa-
tients comparing four daily treatment regimes (Henry et al.,
1998). We focus on comparing a two-drug regimen (zidovudine
plus zalcitabine, 2 NRTTs; n = 326, group 0) with a three-drug
regimen (two NRTTs plus nevirapine; n = 330, group 1) in this
study. For our analysis, the primary outcome is change in RNA
from baseline to 40 weeks post-baseline which was measured in
Study A but was not measured for all participants in Study B. The
surrogate marker of interest is change in CD4 count from base-
line to tj, 0 < t; < 40. That is, we aim to test for a treatment
effect on change in RNA at 40 weeks in Study B (ACTG 320
Study) using the surrogate marker of change in CD4 count via
our proposed group sequential testing approach. Importantly,
the exact times of the CD4 measurements do not perfectly align
between studies. In Study A, CD4 was measured at baseline, 4,
8,24, and 40 weeks; in Study B, CD4 was measured at baseline,
8, 16, 24, and 40 weeks. Before we discuss how to handle this,
we first assessed Assumptions (C1)-(C3). Detailed results, pro-
vided in Web Appendix E, show that we should not borrow in-
formation about the surrogate marker at weeks 4 or 8 from Study
A. Furthermore, there is no measurement available at 4 weeks in
Study B. In Study B, we only consider testing at 16, 24, and 40
weeks. However, because the surrogate was not measured at 16
weeks in Study A, we construct the test statistic at 16 weeks by
borrowing the conditional mean function fL40(s) at 24 weeks.
Figure 3(a) shows the resulting test statistics with dashed
lines drawn at the naive, Bonferroni, Pocock, O’Brien-Fleming,
and Wang-Tsiatis (with § = .4) boundaries as described in Sec-
tion 3.3 with ] = 3 analyses. The constant b in (14) for each of
these procedures was calculated by Monte Carlo with the quan-
tity j/J appearing in the b; expressions replaced by t;/t; with
tj = 16, 24, and 40 because of the unequally spaced analyses.
For all boundaries, we would conclude a significant treatment
effect at 40 weeks using the surrogate marker, CD4 count. To
illustrate the importance of empirically examining the needed

assumptions (which we do in Web Appendix E), we show in
Figure 3(b), the results we would have obtained had we in-
cluded testing at 8 weeks in Study B, using the surrogate marker
information at 8 weeks from Study A, even though we have
empirical evidence of possible assumption violation. Here, we
would have incorrectly concluded a significant negative treat-
ment effect using the naive, Bonferroni, and Pocock boundary,
but not with the O’Brien-Fleming or and Wang-Tsiatis bound-
aries. In practice, it is important that these assumptions be ex-
amined empirically as described in Section 4, to the extent
possible with available data, to reduce the risk of an inappro-
priate conclusion (such as this one) based on the surrogate
marker.

7 DISCUSSION

There is a tremendous amount of hope in the promise of sur-
rogate markers that can identify effective (and ineffective) treat-
ments sooner. In this paper, we offer group sequential procedures
that allow for early stopping to declare efficacy of the treatment
effect or early futility stopping. If the surrogate measurements
over time were independent, this would be a quite straightfor-
ward problem. However, it would be unreasonable to assume
such independence, at least in any clinical setting, and thus, our
statistical development of appropriate procedures was compli-
cated by and accounted for the correlation between the surro-
gate marker measurements over time. An R package that imple-
ments our procedures, named SurrogateSeq, is available
on GitHub (Parast and Bartroff, 2024).

The simulation studies in Section 5 show the proposed group
sequential procedures can be made to control the type I er-
ror close to a nominal level o. The versions of these proce-
dures without futility stopping provide modest savings in sam-
ple size while maintaining comparable power, and the versions
incorporating futility stopping provide more savings in sample
size while having higher power than the Bonferroni-adjusted,
naive group sequential procedure. Our results show that the
naive, unadjusted group sequential procedure is not a viable
option because its type I error probability grossly exceeds the
nominal level, a well-understood phenomenon in many sequen-
tial and group sequential settings. In practice, when deciding
between the Pocock, O’Brien-Fleming, and Wang-Tsiatis ver-
sions of the proposed procedures, we recommend the Pocock
boundaries if aggressive early stopping or simplicity of stop-
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FIGURE 3 AIDS clinical trial testing results where solid dots indicate the estimated test statistic, Wg, at each time point t; for weeks 16, 24, and
40 (a), and weeks 8, 16,24, and 40 (b); a red dashed line (closest to center) is drawn at =® ! (1 — 0.05/2) = 1.96, a blue dashed line (at
about 2.5) is drawn at the Bonferroni boundary, a purple dashed line (outermost line) is drawn at the O’Brien-Fleming boundary, a black
dashed line (between 1.96 and Bonferroni) is drawn at the Pocock boundary, and a gray dashed line (between Bonferroni and outermost line)

is drawn at the Wang-Tsiatis boundary.

ping boundaries (ie, constant) is desired, the O’Brien-Fleming
boundaries if maintaining high power is a primary objective;
otherwise, some instance of the Wang-Tsiatis boundaries can be
chosen as a “middle ground.”

While a major advantage of our proposed approach is the lack
of reliance on parametric assumptions, we still require a num-
ber of assumptions described in Section 4. These assumptions
are not unique to our approach; some version of these assump-
tions is generally required in surrogate marker research (Van-
derWeele, 2013). Importantly, we do not claim that these are
replacing parametric assumptions and are less strict. They are
strict assumptions, and while we can empirically examine some
of these with available data, we cannot examine or test Assump-
tions (C6) and (C7). Assumption (C6) has some parallels to as-
sumptions used in domain adaptation (Kouw and Loog, 2019)
and Assumption (C7) has some parallels to (though is not equiv-
alent to) the widely used assumption of no unmeasured con-
founding in causal inference (VanderWeele and Arah, 2011).
Future work to develop methods to investigate these assump-

tions via simulation or the construction of bounds would be
valuable.

The proposed method for calculating the stopping boundaries
of these procedures in Section 3.3 relies on Assumption (C6)
which permits estimating the covariance structure of the Study B
test statistics using that from Study A. If Study A does not pro-
vide an accurate estimate of the Study B covariance, an alter-
native approach may be to compute the boundaries adaptively
using a type I error-spending function «(t), increasing from
@(0) =0 to «(1) = . In the context of the group sequen-
tial tests in Section 3.3 with stopping rule (13), after the (j —
1)st analysis has been completed and data from the jth analy-
sis is available, the stopping boundary b; would be computed
to satisfy P(|Wg,| < by, ..., (Wgj—1] < bj—1, [Wgj| > b,-) =
a(tj /t) — a(tj,l /t;) where this probability is under the null
hypothesis. This event can be simulated via Monte Carlo using
a similar approach to (17) but where Z is length j and X is re-
placed by the j x j leading principal submatrix of f, a func-
tion of the available data from the first j analyses, producing
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length j vectors X whose entries have the same distribution as
Wg1, Wga, . .., Wgj under the null.

While this work is a unique and novel contribution to the field,
the practical utility of this approach depends immensely on the
quality, size, and representativeness of the Study A data. Notably,
our testing framework makes explicit the reliance on Study A
data via the definition of Ag which is defined with the [L49;(s)
term. (However, for completeness, we discuss our approach with
Study A as random in Web Appendix F.) While it is less com-
mon to see an estimator within a defined null hypothesis, this
reflects the true use of surrogates in practice. It would be unre-
alistic to develop a testing procedure and asymptotic results un-
der the assumption that ny — 00 because, in practice, Study A
is generally not large and is not set by the designers of Study B.
When a study team is considering using a surrogate marker to
test for a treatment effect, they are using information about sur-
rogacy from some previously completed study. To the designers
of Study B, the design is such that this prior Study A is indeed
fixed. This is not the same thing as assuming that the results of
Study A were “exact” or not subject to its own variation, but just
that they they will not change before Study B begins. If Study A
was very small or not representative or in some way not provid-
ing a reasonable estimate of 40, (s), there is no “magic bullet”
(that we know of ) that would produce a legitimate testing proce-
dure that uses the surrogate as a replacement of the primary out-
come, borrowing from Study A. Ultimately, we admit that this
is a difficult problem. Surrogate markers are imperfect and it is
important for us to be explicit about the reliance of this testing
procedure (and more generally, any procedure that uses a surro-
gate marker to replace the primary outcome) on prior data that
is being used to assess surrogacy.
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