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A B S T R A C T  

The ide n t ificat ion of surr oga te ma rke rs is motivated b y their pote n tial to m ake de cision s s ooner about a tr ea tme n t effe ct. How ev er, few methods 
h av e be en dev elope d to actually use a s urr oga te ma rke r t o t est for a tr ea tme n t effect in a future s tudy. Mos t exis ting me thods con sider combin- 
ing surr oga te ma rke r a nd prima ry outc ome inform ation t o t est for a tr ea tme n t effect, rely on fully pa ra me tric me thods whe re s trict pa ra metric 
as sumption s are made about the r ela tionship betw e en the surr oga te and the outc ome, and/or ass ume the s urr oga te ma rke r is meas ure d at only 
a single time point. Re c ent w ork h as propose d a nonpa ra metric tes t for a tr ea tme n t effe ct using only s urr oga te ma rke r inform ation meas ure d at 
a single time point by borrowing information learned from a prior study where both the surrogate and primary outcome were measured. In this 
pa pe r, we utilize this nonpa ra metric tes t a nd pr opose gr oup seque n tial proc e dures th at allow for ea rly s topping of tr ea tme n t effect tes ting in a 
s e t ting wher e the surr oga te ma rke r is meas ure d r epea te dly ov e r time. We de rive the prope rtie s of the corre late d s urro gate-bas ed nonpa ra metric 
tes t s tatis tics at m ultiple time points and compute stopping boundaries that allow for early stopping for a significant tr ea tment effect, or for fu- 
tility. We examine the perform anc e of our proposed test using a simulation study and i l lustrate the method using data from two distinct AIDS 
clinical trials. 

KEY W OR DS : clinical trial; futility stopping; group seque n tial tes ting; s topping bounda ries; surr oga te ma rke r. 
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1 I N T R O D U C T I O N 

he ultima te pr omise of surr oga te ma rke rs is that if they can
e ide n t ified , the n they ca n be use d to m ake de cisions about a

r ea tme n t soone r. A surr oga te ma rke r is a measure me n t tha t r e-
 l ac es a prim ary outc ome and is expe cte d to pre dict the effe ct
f a tr ea tme n t ( Te mple, 1999 ; FDA, 2023 ). In s tudies whe re

he prim ary outc ome meas ure me n t ne c e ssit ate s long follo w -up
r is invasive or expensiv e, s urr oga te ma rke rs may lead to more

imely de cisions . Ri gorous s tatis tical methods h av e be en dev el-
ped to ide n ti fy valid sur r oga te ma rke r s (Ell iott, 2023 ). Ho w -
ve r, fa r fewe r methods have been developed to actually use a
urr oga te ma rke r to test for a tr ea tment effect in a future study,
hich as me n tione d abov e, is the ultim ate goal. Thi s i s a partic-
larly d iffic ult pro b lem to con side r whe n the surr oga te ma rke r

s not perfect e.g., it may not capture the e n tir e tr ea tme n t ef-
ect on the primary outcome. This concept is shown in Figure 1
 uch th a t ther e is a prior s tudy, Study A, whe re the val id ity of
he ea rlie r (or less expe nsiv e) s urr oga te ma rke r rep l a cin g the pri-

a ry (longe r te rm or more expe nsiv e) outc ome h as be e n exa m-
ned. In te res t lies in conducting a future study, Study B, and us-
ng only the surr oga te ma rke r information t o t est for a tr ea tme n t
ffect. 
Ce rtainly, the re is extensive previous work on ut iliz ing a sur-

 oga te ma rke r i n combi nation with the primary out come t o t est
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or a tr ea tme n t effect. For exa mp le, Li e t al. ( 2022 ) propos e
 n a ppr oach to use both surr oga te ma rke r a nd outcome infor-
ation to adaptively calculate conditional power in a group

eque n t ial trial . When both the prim ary outc ome and surro-
ate ma rke r a re time-to-eve n t outcomes, Cook a nd Fa re we ll
 1996 ) and Lin ( 1991 ) propose a wei gh t ed global t es t s tatis-
ic in a group seque n ti al tri al allowing for the evaluation of
he utility of the pote n ti al surro gate e ndpoin t. Unde r the as-
 umption th at the s urr oga t e and out come a re biva riate nor-

al, Tang et al. ( 1989 ) explicitly de mons trates the adva n tage
f a group seque n tial tes t using both e ndpoin ts in te rms of re-
uc e d ne e de d s amp le size. Simil arly, within a biv ari ate normal

ra mework, Ande re r et al. ( 2022 ) develop an approach to com-
ine the outcome and surr oga te in a B ayesian a da ptive desi gn
ontext. 
How ev er, in m any s e tt ings, the quest ion is not how to combine

he surr oga te ma rke r a nd the prima ry outcome. Ins tead, the aim
s to unde rs ta nd how to test for a tr ea tment effect with the sur-
 oga te ma rke r measure me n ts only , a nd th us av oid meas uring the
rim ary outc ome. Methods th a t do addr e ss this que s tion te nd

o either rely on fully parametric methods where strict p aramet -
ic as sumption s ar e made about the r ela tionship betw e en the
urr oga te and the outcome or assume the surr oga te ma rke r is

eas ure d at only a single time point. For examp le, Price e t al.
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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FIGURE 1 Studies A and B: Evaluating a surrogate in Study A and using the surrogate in Study B to test for a tr ea tment effect. 
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( 2018 ) propose to test for a tr ea tment effect using a defined op-
tim al s urr oga te a t a single time point which aims to pr edict the
prim ary outc ome with estim ation via the supe r-lea rne r a nd ta r-
gete d s upe r-lea rne r. Qua n et al. ( 2023 ) a nd Sain t-Hila ry et al.
( 2019 ) propos ed me thods that us e prior information about the
tr ea tme n t effect on a surr oga t e t o plan a future study under the
ass umption th at the true effe cts on the s urr oga te a nd prima ry
outcome are biv ari ate normal. 

Re c e n t work (Pa ras t et al., 2019 , 2023 ) has proposed model-
fr ee pr ocedur es t o t est for a tr ea tment effect using only surro-
gate ma rke r informa tion measur ed in the future study (Study B)
by bor rowing infor mation lear ned from the prior study (Study
A). Pa ras t e t al. ( 2023 ) propos ed a ke rnel -based tes t s tatis tic that
is calculated using surr oga te ma rke r measure me n ts from Study
B obtained at a single, ea rlie r time poin t. How ev er, in practic e,
the surr oga te ma rke r is ofte n meas ure d repeate dly ov er time (e g,
every 6 months) during the course of the study and thus, there
is si gnifica n t in te res t in a pp lying s eque n tial a nd group seque n-
t ial test ing methodology ( Jennison a nd Turnbull, 2000 ; Ba rtroff
et al., 2013 ) to the surr oga te set ting. In this pa pe r, we build upon
the ke rnel -based tes ting fra mework b y pr oposing gr oup sequen-
tial proc e dures th at allow for early stopping to declare efficacy,
a nd a ve rsion that al so allow s for the possibility of futility stop-
ping, i.e., ea rly s t opping t o declar e failur e to r eject the null hy-
pothesis of no effect. The use of the longitudinal surr oga te in
the test stat ist ics prevents them from having the independent
incre me n t s tructure which simplifies the design of many group
seque n tial proc e dures (se e Spies s en s e t al., 2000 ; Kim and Tsi-
at is, 2020 ). Instead , w e c ompute the c orr ela tion structur e of the
surr oga te-b ased nonp a ra metric tes t s tatis tics a nd es timate it us-
ing the Study A data. The estimates of the corr ela tion structur e
a re the n use d to c ompute the group se que n tial proc e dure s ’ stop-
ping boundaries. We examine the perform anc e of our proce-
dures using a simulation s tudy a nd i l lustrate the method using

da ta fr om two dist inct AI D S clinical tri als. 
2 S ET T I N G , N  OTAT I O N, A N D  E X I ST I N  G  

A P P R OA C H  

2.1 Sett ing an d n otat ion 

In Figure 2 , we expand on Figure 1 to i l lustrate our s e tting of in-
te res t which h as s urrogate m a rke r measure me n ts ove r time. Let
 denote the continuous prim ary outc ome meas ure d at study 

comp le tion in Study A and let S j denote a con tin uous surro- 
gate ma rke r which is meas ure d at mult iple t ime points, t j , j =
1 , ..., J, during the study. Without loss of ge ne rality, w e ass ume 
 ≥ 0 . Let G denote the tr ea tment indica tor wher e tr ea tment is 

r andomiz ed and G ∈ { 0 , 1 } (ie, tr ea tment vs . c ontrol). Our aim
is to use information learned in Study A about the r ela tionship 

betw e en the prim ary outc ome, the s urr oga te ma rke r measure- 
me n ts, a nd the tr ea tme n t t o t est for a tr ea tme n t effect at a n ea rlie r
time point in Study B, such that the duration of follo w -up ne e de d 

for Study B can be shortened and the primary outcome does not 
h av e to be meas ure d in Study B. We use a subscript L to explic- 
itly denote the study and us e potenti al outcome s not a tion wher e 
each person in Study L has a pote n tial { Y 

(1) 
L , Y 

(0) 
L , S 

(1) 
jL , S 

(0) 
jL }

where Y 

(1) 
L is the outcome under tr ea tment, Y 

(0) 
L is the outcome 

unde r con tr ol, S 

(1) 
jL is the surr oga te a t time t j under tr ea tme n t,

and S 

(1) 
jL is the surr oga te a t time t j unde r con trol in Study L . For

individual i in tr ea tme n t group g in Study L , the observ e d surro- 
ga te a t time t j is S Lg ji . For individual i in tr ea tme n t group g in
Study A , the observ e d outcome wi l l be denoted as Y Agi ; the out-
come in Study B is never measured. Let n Lg denote the number of 
individuals in tr ea tme n t group g in Study L , and n L = n L 0 + n L 1 
whe re n Lg /n L > 0 . Whe n fe asible, for e ase, we wi l l drop the sub-
script L from notation. 

Our primary goal is to test for a tr ea tment effect on the primary 
outcome in Study B qua n tified as � ≡ E(Y 

(1) 
B − Y 

(0) 
B ) = 0 , 

witho ut measurin g the primary outcome, Y , in Study B. In the 
fo llowing s ection s, we des cribe a n exis ting ke rnel -based tes t for 
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FIGURE 2 Studies A and B: Sequential surr oga te set ting. 
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 tr ea tme n t effect in Study B using a surr oga te measur ed a t only a
ingle time t j (Pa ras t et al., 2023 ) and pos sib le n aiv e approaches
o seque n tial tes t ing (Sect ion 2.2 ), a nd the n propose a novel a p-
roach to seque n tially tes t for a tr ea tme n t effect in Study B, when

he surr oga te is measur ed r epea tedly over time (Section 3 ). In
ection 4 , we detail our ne e de d ass umptions as w ell as methods

o empirically examine these ass umptions . 

2.2 Exis ting appro ach 

uppose there is only a single time point t j , i.e., that the surr oga te
a rke r is measured at only one time poin t afte r ra ndomization,

ut before the end of the study. Here, we drop the subscript j from
 as it is unne c es s a ry, a nd de not e the pot e n ti al surro gate as S 

(g)
L 

nd the o bs erv e d s urr oga te for person i as S Lgi , L = A, B and g =
 , 1 . The goal is to take adva n tage of information from Study A to

est � = 0 using the surr oga te ma rke r measure me n t only from
tudy B. To achieve this goal we first consider using the testing
roc e dure of Pa ras t e t al. ( 2023 ), des cribe d below. Note th at �
an be expres s ed as 

� = E 

(
Y 

(1) 
B 

)
− E 

(
Y 

(0) 
B 

)
= 

∫ 

μB 1 (s ) dF B 1 (s ) −
∫ 

μB 0 (s ) dF B 0 (s ) , 

here μLg (s ) = E(Y 

(g) 
L | S 

(g) 
L = s ) and F Bg (s ) is the cumulative

istribut ion funct ion of S 

(g) 
B . O f cour s e, this expres sion invo lves

 

(g) 
B , which we do not o bs e rve. Pa ras t et al. ( 2023 ) su gge st to

nstead focus on 

�∗ ≡
∫ 

μA 0 ( s ) dF B 1 ( s ) −
∫ 

μA 0 ( s ) dF B 0 ( s ) (1) 

 nd they refe r to �∗ as an ea rl ier tr ea tme n t effe ct be cause it is
efined before the end of Study B using only (1) the c ondition al
ean, μA 0 (s ) , from Study A, and (2) the surr oga te ma rke r in
tudy B i.e., Y 

(g) 
B does not a ppea r in �∗. The mot ivat ion for the

xact construction of �∗ is as fo llows. The troub les ome com-
one n ts of �, in terms of trying to examine the tr ea tment ef-

ect ea rlie r, a re μB 0 (s ) a nd μB 1 (s ) becaus e thes e invo lve Y 

(g) 
B ,

hich is not measure until the end of Study B. Suppose, we
imply de cide d to rep l ace thes e compone n ts with their pa rallel
ompone n ts from Study A, i.e., define �∗ as 

∫ 
μA 1 ( s ) dF B 1 ( s ) −

 

μA 0 ( s ) dF B 0 ( s ) . It is true that this construction could sti l l be re-
erred to as an earlier tr ea tment effect because it is defined with-
ut Y 

(g) 
B . How ev e r, the re a r e two pr o b lem s with this con struc-

ion. First, w e w ould h av e to ass ume th at μB 0 (s ) = μA 0 (s ) and
B 1 (s ) = μA 1 (s ) ; i.e., that the conditional mean in each tr ea t-
e n t group is tran sportab le be tw e en the tw o studies . Se c ond,

t can be shown that unless S is a perfect surr oga te ma rke r, it is
os sib le that �∗ > � and in an extreme case where S is a poor
urr oga te, �∗ may err oneously indica te a tr ea tme n t effect whe n
n fact, � = 0 . It i s thi s se c ond pro b le m that is pa rticula rly wor-
i some. It i s nev er the case in practic e th at w e h av e a perfe ct s ur-
 oga te, and the risk of erroneously concluding there is a tr ea t-

e n t effect using the surr oga te when there is not a treatme n t
ffect on the outcome is not a risk that we are wi l ling to take.
her efor e, w e spe c i fically wa n t a �∗ that ca n give us some gua r-
 n tee, e.g., that �∗ is a lower bound on �. The definition in ( 1 )
oes gua ra n tee this prope rty. In Web Appe ndix A, we show that
nder our as sumption s (s e e Se ction 4 ), �∗ ≤ � and th at when
= 0 ⇒ �∗ = 0 . In addition, we show that a valid test of the

ull hypothesis that �∗ = 0 would also result in a valid test of
he null hypothesis that � = 0 in the s en s e that the type 1 er-
 or ra t e is ≤ α. Thus, t o t es t the n ull hypothesis that � = 0 ,
ne could instead consider testing the null hypothesis that �∗ =
 . Notably, �∗ sti l l r equir es a form of tran sportability be tw e en
he two studies: μB 0 (s ) = μA 0 (s ) (see Section 4 ), though this
s less s trong tha n requiring this equality in both tr ea tme n t
roups. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
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In practice, μA 0 (s ) is unknown and furthermore, Study A data
are fixed in this testing framework. By “fixed”, we mean that all
of our probability calcul ation s wi l l condition on Study A data
and n A does not → ∞ . This is an important point. We spec i fi-
cally address the situation of designing S tudy B after S tudy A has
c onclude d, a nd th us, a n importa n t s tatis tical assumption made
throughout this pa pe r is tha t the Study A da ta is c onditione d on,
a nd he nce tr ea te d as fixe d qua n t it ies in the probabilist ic calcula-
tions. Ther efor e, this earlier tr ea tment effect must be defined in a
way that ackno wledg es and makes explicit this reliance on Study
A; spec i fically, we define 

�E ≡
∫ ̂ μA 0 ( s ) dF B 1 ( s ) −

∫ ̂ μA 0 ( s ) dF B 0 ( s ) , where (2)

̂ μA 0 ( s ) = 

∑ n A 0 
i =1 K h ( S A 0 i − s ) Y A 0 i ∑ n A 0 

i =1 K h ( S A 0 i − s ) 
(3)

is a consis te n t es timate of μA 0 (s ) , and �E is estim ate d by 

̂ �E = n 

−1 
B 1 

n B 1 ∑ 

i =1 

̂ μA 0 (S B 1 i ) − n 

−1 
B 0 

n B 0 ∑ 

i =1 

̂ μA 0 (S B 0 i ) . (4)

Here, K h (·) = K(·/h ) /h where K(·) is a smooth symmetric
density function with finite support (eg, s ta nda rd normal den-
sity) and h is a spec i fied bandwidth, which may be data depen-
de n t. Note that this estimate only uses S data from Study B (no
 da ta fr om Study B is us ed or as s ume d to be meas ure d) and

S, Y da ta fr om Study A in gr oup Z = 0 only. To test the null
hypothesis, � = 0 , Pa ras t et al. ( 2023 ) su gge st te sting the null
hypothesis: �E = 0 , (based on the properties above r egar ding
�∗) using the Wald-type test stat ist ic W E = 

√ 

n B ̂  �E / ̂  σE . The
test rejects the null hypothesis when | W E | > �−1 (1 − α/ 2) .
In Web Appendix B , we provide the form of ̂  σE and d isc uss the
asymptot ic propert ies of ̂  �E . 

To use thi s exi s ting tes t in our s e t ting in Figur e 2 , one could
conside r tes tin g �E = 0 usin g W E c ompute d at each time t j ,
j = 1 , . . . , J, but this would have inflated Type 1 error proba-
bility. To remedy this, one could utilize a Bonferroni correction
whe re the n ull hypothesi s i s reje cte d at the ea rlies t t j such that
| W E | > �−1 (1 − α/ (2 J)) . How ev er, one w ould expe ct this to
be ov erly c on s erv at ive, i .e., have low power. In the next section,
we propose a compromise betw e en these two approaches via
group seque n tial proc e dures . 

3 G R O  U P  S E Q U E N T I A L  P R O C E D  U R E S  

Her e, we pr opose a gr oup seque n tial proc e dure th at allows for
ea rly tes ting of a tr ea tme n t effect, de rive the prope rties of the cor-
r ela te d s urr oga te-b ased nonp a ra metric tes t s tatis tics at multiple
time poin ts, a nd develop s topping bounda ries that allo w for e arly
stopping for a significant tr ea tment effect or for futility. We as-
s ume th at in Study A, we have measured the surr oga te ma rke r at
time points t j , j = 1 , . . . , J, where J ≥ 2 is the maximum num-
ber of interim analyses, and the same time points wi l l be utilized
for measuring the surr oga te ma rke r in Study B. Throughout this
s ection, le t [ J] := { 1 , 2 , . . . , J} . 
3.1 Group s eque n tial s tatis tic 
We wi l l uti l ize the estimator s ( 3 )–( 4 ) but r epea tedly calcula ted
with data from each time point t j . Thus, we first adjust the no- 
tation to reflect this. For j ∈ [ J] , recall that S Lgi j is the Study L 

( L = A, B ) surr oga te for the i th patie n t in group g ( g = 0 , 1 )
meas ure d at time t j and Y Agi is the Study A outcome for the i th 

patie n t in group g ( g = 0 , 1 ). For each t j , for any s within the sup-
port of S A 0 i j , we define the kerne l e stimator using Study A data 
from time t j : 

̂ μA 0 j ( s ) = 

∑ n A 0 
i =1 K h ( S A 0 i j − s ) Y A 0 i ∑ n A 0 

i =1 K h ( S A 0 i j − s ) 
, and let (5) 

̂ �E j = 

1 

n B 1 

n B 1 ∑ 

i =1 

̂ μA 0 j ( S B 1 i j ) − 1 

n B 0 

n B 0 ∑ 

i =1 

̂ μA 0 j ( S B 0 i j ) (6) 

be the estimator of �E at time t j . Let �E = 

(�E1 , �E2 , . . . , �EJ ) T where 

�E j = 

∫ ̂ μA 0 j ( s ) dF B 1 j ( s ) −
∫ ̂ μA 0 j ( s ) dF B 0 j ( s ) , 

and F Bg j (s ) is the cumulative distribut ion funct ion of S Bg j . To 

reflect the group seque n tial na tur e of this s e t up, we rep l ace the
null hypothesis, �E = 0 by 

H E : �E = 0 , (7) 

the la t te r de noting the J-dime nsional ze ro v e ct or. We t est ( 7 ) via
group seque n tial monitoring of the longitudinal process ̂  �E = 

( ̂  �E1 , ̂  �E2 , . . . , ̂  �EJ ) T . 

3.2 Cova ria nce a nd limiting distr i bution 

Conditional on { ̂  μA 0 j (s ) } j∈ [ J] , it can be shown that as 
n B 0 , n B 1 → ∞ , the suit ably- normal ized d istribution of 
( ̂  �E − �E ) approaches a J-dimensional multiv ari ate nor- 
mal random vector with mean zero (see Web Appendix B ), and 

w e re call th a t �E is the zer o v e ctor unde r the n ull hypothesis ( 7 ).
For j, j ′ ∈ [ J] , the cov ari anc e m atrix of ̂  �E h as ele me n ts 

σ j j ′ := cov ( ̂  �E j , ̂  �E j ′ ) 

= cov 

( 

1 

n B 1 

n B 1 ∑ 

i =1 

̂ μA 0 j ( S B 1 i j ) − 1 

n B 0 

n B 0 ∑ 

i =1 

̂ μA 0 j ( S B 0 i j ) , 

1 

n B 1 

n B 1 ∑ 

i =1 

̂ μA 0 j ′ ( S B 1 i j ′ ) − 1 

n B 0 

n B 0 ∑ 

i =1 

̂ μA 0 j ′ ( S B 0 i j ′ ) 

) 

(8) 

= 

1 

n 

2 
B 1 

cov 

( n B 1 ∑ 

i =1 

̂ μA 0 j ( S B 1 i j ) , 
n B 1 ∑ 

i =1 

̂ μA 0 j ′ ( S B 1 i j ′ ) 

) 

+ 

1 

n 

2 
B 0 

cov 

( n B 0 ∑ 

i =1 

̂ μA 0 j ( S B 0 i j ) , 
n B 0 ∑ 

i =1 

̂ μA 0 j ′ ( S B 0 i j ′ ) 

) 

(9) 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
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= 

1 

n 

2 
B 1 

n B 1 ∑ 

i =1 

cov 
(̂ μA 0 j ( S B 1 i j ) , ̂  μA 0 j ′ ( S B 1 i j ′ ) 

)
+ 

1 

n 

2 
B 0 

n B 0 ∑ 

i =1 

cov 
(̂ μA 0 j ( S B 0 i j ) , ̂  μA 0 j ′ ( S B 0 i j ′ ) 

)
= 

1 

n B 1 
cov 

(̂ μA 0 j ( S B 11 j ) , ̂  μA 0 j ′ ( S B 11 j ′ ) 
)

+ 

1 

n B 0 
cov 

(̂ μA 0 j ( S B 01 j ) , ̂  μA 0 j ′ ( S B 01 j ′ ) 
)
, (10) 

he re te rm s invo lvin g co v ari ances be tween S B 1 i j and S B 0 i j ′ ,
hich are equal to zero because S B 1 i j ⊥ S B 0 i j ′ as they are from
iffe re n t treatme n t groups, a re dropped from ( 8 ) to ( 9 ). Im-
orta n tly, ( 10 ) relies on Study A being c onditione d on, as men-

ioned in Section 2.2 and further d isc usse d in Se ction 7 . Taking
j = j ′ in ( 10 ) gives the v ari ance 

σ j j = Var ( ̂  �E j ) 

= 

1 

n B 1 
Var ( ̂  μA 0 j ( S B 11 j )) + 

1 

n B 0 
Var ( ̂  μA 0 j ( S B 01 j )) . 

(11) 

Let D be the J × J diagonal matrix with e n tries
−1 / 2 
11 , σ

−1 / 2 
22 , . . . , σ

−1 / 2 
JJ , and let � = cov ( D ̂

 �E ) which
s the J × J cov ari anc e m atrix with ( j, j ′ ) e n try equal to

j j ′ / 
√ 

σ j j σ j ′ j ′ and, con s eque n tly, diagonal e n tries equal to 1.
he null case of the multiv ari ate normal limit mentioned above

s that, under ( 7 ), 

�−1 / 2 D ̂

 �E → N J ( 0 , I ) (12) 

s the n Bg → ∞ , where I is the J × J identity matrix. Althougĥ E has the m ultiva riate normal limit ( 12 ), it does no t h av e the in-
epe nde n t incre me n t s tructure (Spies s en s e t al., 2000 ; Kim and
siatis, 2020 ) often exploited to simplify group seque n tial a nal -
ses since, for j < j ′ , the distribution of S Bg1 j ′ differs in ge ne ral
r om tha t of S Bg1 j , th us so do the dis tributions of ̂  μA 0 j (S Bg1 j ′ )
 nd ̂ μA 0 j (S Bg1 j ) , th us cov ( ̂  μA 0 j ( S Bg1 j ) , ̂  μA 0 j ′ ( S Bg1 j ′ )) 
 =
ar ( ̂  μA 0 j (S Bg1 j )) in ge ne ral, a nd so cov ( ̂  �E j , ̂  �E j ′ ) 
 =
ar ( ̂  �E j ) . In spite of this, in Section 3.3 , we provide a way
 o comput e st opping boundaries for ̂ �E ut iliz ing the limit ing
ormal distribution and the cov ari ance structure ( 10 ), which
an be implemented by Monte Carlo simul ation . 

3.3 Group s eque n tial tes ts with out fut ility stopping 

ep l a cin g the v ari ances in ( 11 ) by the corresponding sam-
 le v ari ances, for j ∈ [ J] define the v ari anc e estim ator ̂ σ j j =
 1 
g=0 

1 
n Bg 

{ 1 
n Bg 

∑ n Bg 
i =1 ( ̂  μA 0 j ( S Bgi j )) 2 − ( 1 

n Bg 

∑ n Bg 
i =1 ̂  μA 0 j ( S Bgi j )) 2 } 

f σ j j . We consider the group seque n tial proc e dure th at stops
nd rejects the null hypothesis ( 7 ) at the first analysis j ∈ [ J]
 uch th at 

| W E j | ≥ b j , where W E j := 

̂ �E j / 
√ ̂ σ j j , (13) 

 nd othe rwise te rmina tes a t the Jth a nalysis a nd decla r es failur e
o reject the n ull hypothesis. The s tatis tics W E1 , W E2 , . . . , W EJ 
xte nd the univa riate s tatis tic, W E , to the group seque n tial
 e tting. In ( 13 ), the b j a re pre-dete rmined s topping bounda ries;
n ge ne ral the b j wi l l also depend on J but w e s uppress this
o simplify the notation. This test structure does not permit
topping before the Jth analysis to declar e failur e to r eject the
ull hypothesis, known as futility s topping, a nd in Section 3.4 ,
e d isc uss a mod ifica tion of this pr oc e dure th at allows futility

t opping. To comput e the st opping boundaries b j to achieve ap-
r oxima tely a prescribed type I error probability α, we consider
 s e t up that includes the popul ar Poc ock ( 1977 ), O’B rien-
le ming ( 1979 ), a nd Wa ng-Tsiatis ( 1987 ) “powe r fa mily” type
oundarie s, althou gh a similar approach can be used for other

amil ies of grou p seque n tial bounda ries (see Je nnison a nd
urnbull, 2000 ). For these families of stopping boundaries, the
 j in ( 13 ) are of the form 

b j = b ·˜ b j , (14)

here ̃  b j is a known function of j (and J) and b is a cons ta n t
et ermined t o satisfy the type I error pro bability con s train t. For
xample, for j ∈ [ J] , the Pocock bound aries us e ̃  b j = 1 , the
’Brie n-Fle ming bounda ries use ̃  b j = 

√ 

J/ j , a nd the Wa ng-
si atis bound aries us e ̃  b j = ( j/J) δ−1 / 2 for a chos en v alue of the
owe r pa ra mete r δ. The la t ter includes the Pocock ( δ = 1 / 2 )
 nd O’Brie n-Fle ming ( δ = 0 ) bounda ries as speci al cas es.
hese ̃  b j are intended for equally space analyses, i.e., analysis

 ime points sat isfy t j /t J = j/J. For une qually spac e an alyses,
hes e function s of j/J should be rep l ac e d by t j /t J . 

The normal limit ( 12 ) sti l l holds when the cov ari ances in ( 10 )
r e r ep l ac e d by any c onsistent estim ators ̃  σ j j ′ of σ j j ′ , for j, j ′ ∈
 J] . Let ˜ � and ̃

 D denote the corresponding matrices with the
j j ′ rep l ac e d by ̃  σ j j ′ , i.e., ̃  D is the J × J diagon al m atrix with en-

ries { ̃  σ
−1 / 2 
j j } and ̃

 � is the J × J matrix with ( j, j ′ ) e n try equal
o ̃  σ j j ′ / 

√ ˜ σ j j ̃  σ j ′ j ′ and diagonal entries equal to 1. Then, 

˜ �
−1 / 2 ˜ D ̂

 �E → N J ( 0 , I ) (15)

nder the null. The W E j in ( 13 ) are the entries of the v e c-
or ̂  D ̂

 �E , where ̂  D is the diagonal matrix with e n tries { ̂  σ
−1 / 2 
j j } .

 normal limit analogous to ( 12 ) and ( 15 ) holds for ̂  D ̂

 �E : ̂ �
−1 / 2 ̂ D ̂

 �E → N J ( 0 , I ) (16)

nder the null, where ̂ � is the v ari anc e–c ov ari anc e m atrix of
 

 ̂

 �E , of which ̃

 � is a consis te n t es timat or. Since the vect or ̂  D ̂

 �E 
f the W E j has the same asymptotic limit under the null as ̃  D ̂

 �E 
he n both a re suitably s ta nda rdize d, the ev e n t ( 13 ) has the same

s ymptotic probab ility unde r the n ull as the eve n t 

| X j | ≥ b j , where X = (X 1 , . . . , X J ) T := 

˜ �
1 / 2 Z 

and Z ∼ N J ( 0 , I ) . (17)

or a ny s topping bounda ries b j of the form ( 14 ), mo vin g ̃  b j to
he other side of the ine quality, ( 17 ) be c omes | X j | / ̃  b j ≥ b. From
his, w e se e th at choosing b to be the upper- α quantile of the dis-
ribution of 

max 
j∈ [ J] 

| X j | / ̃  b j (18)

akes the test ( 13 ) appr oxima te ly leve l- α. 



6 � Biometrics , 2024, Vol. 80, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/4/ujae108/7815645 by U
niversity of Texas - Austin user on 13 January 2025
Since, in ge ne ral, the ele me n ts X j of X = 

˜ �
1 / 2 Z in ( 18 ) a re

not indepe nde n t, s ta nda rd tools fr om or de r s tatis tics or ex-
treme value theory cannot be used to calculate ( 18 ). Ho w -
eve r, it ca n be quickly and accurately computed using Monte
Ca rlo b y sim ul ating a l a rge n umbe r B of indepe nde n t m ultiva ri -
ate s ta nda rd normals Z 

(1) , . . . , Z 

(B ) ∼ N J ( 0 , I ) , s e tting X 

(k) =
(X 

(k) 
1 , X 

(k) 
2 , . . . , X 

(k) 
J ) T := 

˜ �
1 / 2 Z 

(k) for all k ∈ [ B ] , and tak-
ing b to be the upper- α s amp le quantile of { max j∈ [ J] | X 

(1) 
j | / ̃  b j ,

max j∈ [ J] | X 

(2) 
j | / ̃  b j , . . . , max j∈ [ J] | X 

(B ) 
j | / ̃  b j . } 

3.4 Group s eque n tial tes ts with futility s topping 

The distribution theory above makes pos sib le a v arie ty of mod-
ifications to the group seque n tial s topping rule defined above to
al low futi lity stopping, i.e., early stopping before the Jth stage
to declare failure to reject the null. In this section, we describe
one way of doing this with a flexible family of tests known as the
powe r fa mily of tw o-side d inner w e d ge tes ts; these a re ge ne ral -
i zations of stopp ing rules of Pampallona and Tsiatis ( 1994 ) due
to Je nnison a nd Turnbull ( 2001 ). Let W E j , j ∈ [ J] , be as in ( 13 ).
Give n s topping bounda ries { (a j , b j ) } j∈ [ J] with 

0 ≤ a j < b j for all j ∈ [ J − 1] and a J = b J , (19)

a ge ne ral form of a tw o-side d tes t with a n inne r w e dge for futility
s topping s tops at the first analysis j ∈ [ J] such that 

| W E j | 
∈ [ a j , b j ) , (20)

rejecting H E if the outer boundary is crossed | W E j | ≥ b j , or
declaring failure to reject the null if the s tatis tic e n te rs the “inne r
w e dge” | W E j | < a j . By virtue of the restriction a J = b J , the test
is gua ra n te e d t o st op at the Jth stage if it has not stopped prior
to that. The power family inner w e dge tests (see Jennison and
Turnbull, 2000 , p. 118) utilize boundaries of the form 

b j = b( j/J) δ−1 / 2 for j ∈ [ J] , (21)

a j = 

{
(a + b)( j/J) 1 / 2 − a ( j/J) δ−1 / 2 for j 0 ≤ j ≤ J, 
0 for 1 ≤ j < j 0 , 

(22)

with cons ta n ts a, b, δ, and j 0 ∈ [ J] , the la t te r de noting the ea r-
lies t a nalysi s at which it i s desired to allow futility stopping.
Choosing 

b > 0 , δ ≤ 1 , and a ∈ 

(
−b, 

b 
(J/ j 0 ) 1 −δ − 1 

)
(23)

gua ra n te es th a t the r e sulting boundarie s ( 21 )–( 22 ) wi l l satisfy
( 19 ). In Web Appendix C , we provide a method for calculating
the cons ta n ts a, b in the bounda ries ( 21 )–( 22 ) to achieve a n a p-
pr oxima te ly leve l- α te st. 

4 A S S U M  P  T I O N S  A N D  E M P I R I C  A L  

A S  S E S  S M E N T  

We assume the following for the surr oga te ma rke r at each time
t j : 

(C1) E(Y 

(0) 
L | S 

(0) 
L j = s ) is a monotone increasing function of

s for L = A, B ;
(C2) E(Y 

(1) 
L | S 

(1) 
L j = s ) ≥ E(Y 

(0) 
L | S 

(0) 
L j = s ) for all s for L = 

A, B ;
(C3) P (S 

(1) 
L j > s ) ≥ P (S 

(0) 
L j > s ) for all s for L = A, B. 

As sumption s ( C1)–( C3) a re not unique to our a pproach a nd 

parallel those r equir ed in ge ne ral in surr oga te ma rke r resea rch 

(Wa ng a nd Taylor, 2002 ; Che n e t al., 2007 ; Wu e t al., 2011 ;
Va nde r We ele, 2013 ; Pa ras t et al ., 2017 ). Assumpt ion (C1) im-
plies that the surr oga te ma rke r is positively r ela t ed t o the time of
the primary outcome, (C2) implies that there is a non-ne gativ e 
r esidual tr ea tme n t effe ct beyond th at on the s urr oga te ma rke r,
and (C3) implies that there is a non-ne gativ e treatme n t effect on 

the surr oga te ma rke r. Our tes ting a ppr oach r equir es the follo w -
in g a dditional s e t of as sumption s for the surro gate ma rke r at each 

t j : 

(C4) The surr oga te captur es a r eas onab ly l arge proportion 

of the tr ea tme n t effect on the primary outcome, de- 
scribed below; 

(C5) The support of S 

(0) 
B j and S 

(1) 
B j m us t be con tained within 

the support of S 

(0) 
A j ; 

(C6) E(Y 

(0) 
A | S 

(0) 
A j = s ) = E(Y 

(0) 
B | S 

(0) 
B j = s ) for all s ; 

(C7) Y 

(1) 
L ⊥ S 

(0) 
L j | S 

(1) 
L j and Y 

(0) 
L ⊥ S 

(1) 
L j | S 

(0) 
L j for L = A, B . 

While we don’t r equir e a perfect surr oga te, we do need the 
surr oga t e t o be us eful in s ome s en s e of surro gac y where in A s-
s umption (C4), w e meas ure s urroga cy usin g the proportion of 
the tr ea tme n t effe ct on the prim ary outc ome th at is exp l ained by
the tr ea tme n t effe ct on the s urr oga te ma rke r (Freedma n et al.,
1992 ; Wa ng a nd Taylor, 2002 ). If the surr oga te is weak in the 
s en s e of exp l aining a low proportion of the tr ea tme n t effe ct, w e
w ould expe ct to h av e low er pow er t o t est for a tr ea tment effect
on the primary outcome. In this pa pe r, we assume that surro- 
gate ma rke r v alid ation h as be en previously c omp le ted a nd the re
is some level of agree me n t clinically and stat ist ically that the S 

being c onsidere d is a reason able s urr oga te. Assumption (C5) is 
ne e de d for kernel est imat ion . As sumption s (C6) mean s that in 

the control groups, the two studies share the same c ondition al 
expectations for Y 

(0) given S 

(0) 
j . Though this is certainly a strong 

as sumption, s ome strong condition s about the transportability 
betw e e n Study A a nd Study B a re ne c es s a ry in orde r to borrow
informa tion fr om Study A. If no as sumption s about tran sport a - 
bility can be made, it is likely not feasible to borrow informa- 
tion from Study A. This assumption is at least only spec i fic to 

transportability of the control grou p cond itional means and is 
likely reas onab le whe n the con tr ol gr oups ar e, e.g., usual car e or
p l a ce bo. Assumption (C7) is needed for ide n tifiability. 

It is reas onab le to ask whether these assumptions hold and 

wh at h a ppe n s if they do not ho ld. Thes e question s h av e largely
not been addres s ed in existing work with the exception of rece n t 
work by Elliott et al. ( 2015 ) and Shafie Khoras s ani e t al. ( 2023 )
in a met a -a nalytic fra mework. As sumption s (C6) and (C7) gen- 
e rally ca nnot be e mpirically exp lored with o bs erv e d data be- 
cause we do not h av e the ne e de d qua n t it ies i .e., w e only h av e
 

(g) and S 

(g) for an individual if they were in group g, and we do 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
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TAB LE 1 Expe cte d s topping time E(T ) a nd pr obability P( Rej. H E ) of r eje cting the null hypothesis H E for fixe d s amp le and group s equenti al 
proc e dures without futility stopping, at most J = 8 analyses, and nomin al lev el α = . 05 base d on 1000 r eplica tions of each proc e dure in each 

s e tting. 

Setting 1: no treatme n t effect Setting 2: treatme n t effect 

Test E(T ) (SE) P( Rej. H E ) (SE) E(T ) (SE) P( Rej. H E ) (SE) 

Fixed s amp le test 8.000 (.000) .053 (.007) 8.000 (.000) .822 (.012) 
GS un adjuste d 7.314 (.060) .151 (.011) 5.103 (.073) .874 (.010) 
GS Bonferroni 7.921 (.020) .021 (.005) 6.694 (.056) .586 (.016) 
Pocock 7.792 (.034) .045 (.007) 6.173 (.065) .723 (.014) 
O’Brie n-Fle ming 7.938 (.012) .054 (.007) 6.609 (.043) .808 (.012) 
Wang-Tsiatis ( δ = . 4 ) 7.866 (.024) .046 (.007) 6.210 (.058) .762 (.013) 
Sta nda rd e rrors SE are in pa re n the se s. 
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ot h av e any prim ary outc ome meas ure me n ts, Y , from Study B.
ow ev er, Ass umptions ( C1)–( C5) ca n be empirically explore d
ith av ail ab le d ata to s ome exte n t. As sumption s ( C1)–( C2) can
e explored for Study A, but not for Study B (be cause w e do not
 av e prim ary outc ome inform ation); (C3) ca n be exa mined in
oth studies . Ass umption (C4) can be explore d using only Study
 d ata, while As sumption (C5) can be exp lored in both s tud -

es because it involves only the surr oga te ma rke r in both s tud -
es. We i l lustrate as s es sme n t of As sumption s ( C1)–( C5) in our
 ata app licat ion in Sect ion 6 and spec i fically point out the re-
ult of misuse of our method if it is used when an assumption is
io l ated. 

5 S I M U L AT I O N  ST U D I E S  

er e, we pr es ent simul ation studies of the perform anc e of the
r oposed gr oup seque n tial proc e dures and compare them with
 fixed s amp le proc e dure and tw o n aiv e group se que n tial pro-
 e dures in tw o s e ttings: Se tting 1 in which there is no tr ea tme n t
ffect and Setting 2 in which there is a tr ea tme n t effect. The dat a -

ge ne rating me ch anis ms for the s e s e ttin gs as well as a dditional
imula tion r esults and d isc ussion ar e pr ovided in Web Appen
ix D . In both s e t tings, the surr oga te ma rke r is pos sib ly mea-
 ure d at J = 8 times points t j = 1 , 2 , . . . , 8 and the primary
utcome is measured at t 8 = 8 . Data ge ne ration (for Study B)
 nd tes ting proc e dure s are re plicated 1000 time s in each s e tting
 o estimat e the expect ed st opping time E(T ) , where T is the
ime point at which the proc e dure termin ates and reje cts or de-
lar es failur e to r eject H E , and the probability P ( Rej. H E ) of the
roc e dure reje ct ing the null . The r esults ar e s umm arize d in Ta-
les 1 and 2 which contain the ope rating cha racte ris tics of the
r oposed gr oup seque n tial proc e dures without and with futility
topping, respe ctiv ely. Both tables include the fixed s amp le size
est, which rejects H E if and only if ( 13 ) holds for j = J = 8 .
 he ta b les als o include two naive group seque n tial pr ocedur es,
e noted b y “GS unadjus ted” a nd “GS Bonfe ronni,” which s top
nd reject H E at the ea rlies t a nalysis j such that ( 13 ) occ ur s, with
 1 = . . . = b J = z α/ 2 , the upper α/ 2 standard normal quantile,

n the un adjuste d case, and with b 1 = . . . = b J = z α/ 2 / 8 in the
onfe rroni -adjus ted case. Both of these proc e dures de cla re fail -
r e to r eject the null a t the J = 8 th analysis if ( 13 ) does not occur

or any j ∈ [ J] = [8] . 
Table 1 shows the pe rforma nce of the group seque n tial proce-

ure s de scribe d in Se ction 3.3 with Poc ock, O’B rie n-Fle ming,
 nd Wa ng -Tsiatis pow e r fa mily bounda ries (he reafte r a bbre vi-
ted P, OF, and WT). These are given by stopping rule ( 13 ) with
oundaries of the form ( 14 ) with ̃

 b j = 1 , 
√ 

J/ j , and ( j/J) δ−1 / 2 

ith δ = . 4 for the P, OF, and WT boundarie s, re spe ctiv ely. The
alue b in ( 14 ) was c ompute d by Monte Carlo as described in
ection 3.3 . In Setting 1, there is very little savings in expe cte d
topping time E(T ) below the maximum value T = J = 8 , re-
e cting th at the n ull is true a nd none of these proc e dures in this
 e tting allow early stopping to declare failure to reject the null.
he P, OF, and WT proc e dures m aintain a type I error proba-
ility close to the nominal level of α = . 05 , while the GS un-
djuste d proc e dure h as a type I err or pr obability tha t is mor e
h an thre e times α = . 05 . In c on tras t, the GS Bonfe rroni s top-
ing value of z α/ 2 / 8 = 2 . 734 , which is quite con s erv a tive, r e-
ults in a type I error probability of.021. In Setting 2, the P, OF,
nd WT proc e dures provide roughly 1–2 analyses of savings on
v erage ov er the fixe d s amp le test, which alw ays t ake s J = 8 a nal -
ses . The P proc e dure is the most aggressive in early stopping,
ith the OF proc e dure the leas t, a nd the WT proc e dure in the
iddle. The GS un adjuste d proc e dure h as the sm allest expe cte d

topping time at 5.103, but this is due to its extreme type I er-
 or pr obability exc e e danc e in Setting 1. In Setting 2, the powers
f the P, OF, and WT proc e dures are s ubs ta n tially hi ghe r tha n

he GS Bonferroni proc e dure, and c omparable to but slightly less
han the fixed s amp le pr ocedur e despite their savings in expected
topping time. Table 2 shows the perform anc e of the group se-
ue n tial proc e dures th at inc orporat e futility st opping described

n Section 3.4 with δ = 1 / 2 , 0, and.4, respe ctiv e ly. For the se pro-
 e dures, futility stopping be gins at the j 0 = 4 th an alysis . The
alues (a, b) in ( 21 )–( 22 ) were computed b y Mon te Ca rlo as
escribe d in Se ction 3.4 . The fixe d s amp le a nd unadjus ted a nd
onferr oni GS pr oc e dur es ar e the same as in Ta ble 1 . T he P, OF,
nd WT proc e dures with futility stopping show more savings in
(T ) in both Settings 1 and 2, with the P proc e dure being the
ost aggressive in early stopping, follow e d by the WT and OF

roc e dures . These show s ubs ta n ti al s avin gs o v er the fixe d sam-
le and n aiv e GS proc e dures, which do not al low futi lity stop-
in g, in Settin g 1, a nd eve n savin gs o v er these proc e dures in Set-

ing 2, with the exception of the GS un adjuste d proc e dure whose
ype I error probability is more than 3 times α = . 05 . The power
f the P, OF, and WT proc e dures is hi ghe r tha n the GS Bonfe r-
 oni pr oc e dure, which is c on s erv ative in this s en s e of being un-
e rpowe red in Setting 2 as well as having a type I error probabil-

ty of.021 in Setting 1. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
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TAB LE 2 Expe cte d s topping time E(T ) a nd pr obability P( Rej. H E ) of r eje cting the null hypothesis H E for fixe d s amp le and group s equenti al 
proc e dures with futility stopping beginning at the j 0 = 4 th a nalysis, at mos t J = 8 a nalyses, a nd nominal level α = . 05 based on 1,000 re plica - 
tions of each proc e dure in each s e tting. 

Setting 1: no treatme n t effect Setting 2: treatme n t effect 

Test E(T ) (SE) P( Rej. H E ) (SE) E(T ) (SE) P( Rej. H E ) (SE) 

Fixed s amp le test 8.000 (.000) .053 (.007) 8.000 (.000) .822 (.012) 
GS un adjuste d 7.314 (.060) .151 (.011) 5.103 (.073) .874 (.010) 
GS Bonferroni 7.921 (.020) .021 (.005) 6.694 (.056) .586 (.016) 
Pocock 4.756 (.033) .051 (.007) 5.572 (.056) .662 (.015) 
O’Brie n-Fle ming 5.340 (.032) .053 (.007) 5.619 (.040) .706 (.014) 
Wang-Tsiatis ( δ = . 4 ) 4.908 (.032) .051 (.007) 5.333 (.049) .674 (.015) 
Sta nda rd e rrors SE are in pa re n the se s. 
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6 A P P L I C AT I O N TO  A I D S  C L I N I C A L T R I A L S  

We i l lustra te our pr oposed testing pr oc e dur e using da ta fr om
two r andomiz ed clinical trials from the AIDS Clinical Trial
Group (A CTG) Network: A CTG 320 (Study A) and ACTG
193A ( Study B). AC TG 320 was a r andomiz ed, doub le-b lind
trial among 1156 HIV-infe cte d patie n ts th at c ompare d a tw o-
drug re gimen (tw o nucle oside rev e rse tra nscriptase inhibitors
[NRTI]; n = 579 ) with a thr ee-drug r e gimen (tw o NRTIs plus
indinavir; n = 577 ) (Ha mme r et al., 1997 ). ACTG 193A was a
r andomiz ed, doub le-b lind tri al among 1,313 HIV-infe cte d pa-
tie n ts compa ring four daily tr ea tme n t regimes (He nry et al.,
1998 ). We focus on comparing a two-drug regimen (zidovudine
plus zalcitabine, 2 NRTIs; n = 326 , group 0) with a three-drug
re gimen (tw o NRTIs plus nevirapine; n = 330 , group 1) in this
s tudy. For our a n alysis, the prim ary outc ome is ch ange in RNA
from baseline to 40 w e eks post -b aseline which was meas ure d in
Study A but was not measured for all p articip ants in Study B. The
surr oga te ma rke r of in te res t is cha ng e in C D4 count from base-
line to t j , 0 < t j ≤ 40 . Th at is, w e aim to test for a tr ea tment
effect on change in RNA at 40 w e eks in Study B (ACTG 320
Study) using the surr oga te ma rke r of change in CD4 count via
our pr oposed gr oup seque n tial tes ting a pproach. Importa n tly,
the exact times of the CD4 measure me n ts do not perfectly align
betw e e n s tudies. In Study A, C D4 was me as ure d at baseline, 4,
8, 24, and 40 w e eks; in Study B, CD4 was meas ure d at baseline,
8, 16, 24, and 40 w e eks . Before w e d isc uss how to handle this,
we first as s es s ed As sumption s ( C1)–( C3). Det ailed re sults, pro-
vided in Web Appendix E , show that we should not borrow in-
formation about the surr oga te ma rke r at weeks 4 or 8 from Study
A. Furthe rmore, the re is no measure me n t av ail ab le at 4 w e eks in
Study B. In Study B, we only conside r tes ting at 16, 24, and 40
w e eks . How ev er, be cause the s urr oga te was not meas ure d at 16
w e eks in Study A, we construct the test stat ist ic at 16 w e eks by
borrowing the c ondition al mean function ̂  μA 0 (s ) at 24 w e eks . 

Figure 3 (a) shows the resulting test stat ist ics with dashed
lines drawn at the n aiv e, Bonferroni, Poc ock, O’B rie n-Fle ming,
a nd Wa ng-Tsi atis (with δ = . 4 ) bound arie s as de scribe d in Se c-
tion 3.3 with J = 3 an alyses . The c ons ta n t b in ( 14 ) for each of
these proc e dures w as calcul ated b y Mon te Ca rlo with the quan-
tity j/J a ppea ring in the ̃  b j expres sion s rep l ac e d by t j /t J with
t j = 16 , 24, and 40 because of the une qually spac e d an alyses .
For all boundaries, we would conclude a si gnifica n t tr ea tme n t
effect at 40 weeks using the surr oga te ma rke r, CD4 coun t. To
i l lustrate the importance of empirically examining the ne e de d
as sumption s (which we do in Web Appendix E ), we show in 

Figure 3 (b), the results we wo u ld h ave obtained had we in- 
cluded testing at 8 w e eks in Study B, using the surr oga te ma rke r 
informa tion a t 8 w e eks from Study A, ev en though w e h av e
e mpirical evide nce of pos sib le as sumption vio l ation . Here, we 
w ould h av e inc orre ctly c onclude d a si gnifica n t ne gativ e tr ea t-
me n t effect using the n aiv e, Bonferroni, and Pocock boundary, 
but not with the O’Brie n-Fle ming or a nd Wa ng-Tsiatis bound - 
aries . In practic e, it is importa n t that thes e as sumption s be ex- 
a mined e mpir ically as descr ibe d in Se ction 4 , t o the ext e n t
pos sib le with av ail ab le d a ta, to r e duc e the risk of a n ina ppro-
priate conclusion (such as this one) based on the surr oga te 
ma rke r. 

7 D I S  C U S S  I O N 

There is a tre me ndous a moun t of hope in the promise of sur- 
r oga te ma rke rs that ca n ide n t ify effect ive (and ineffect ive) tr ea t-
me n ts soone r. In this pa pe r, we offe r group seque n tial proc e dures 
that allow for early stopping to declare efficacy of the treatme n t 
effect or early futility stopping. If the surr oga te measur e me n ts 
over time were independent, this would be a quite straightfor- 
war d pr oblem. How ev er, it w ould be unreason able to assume 
such indepe nde nce, at leas t in a ny clinical s e tting, a nd th us, our
s tatis tical developme n t of a ppr opria te pr oc e dures was c ompli- 
cated by and ac c ounte d for the corr ela tion betw e en the surro- 
gate ma rke r measure me n ts ove r time. An R package that imple- 
me n ts our proc e dures, n ame d SurrogateSeq , is av ail ab le 
on GitHub (Pa ras t a nd Ba rtroff, 2024 ). 

The sim ulation s tudies in Section 5 show the pr oposed gr oup 

seque n tial proc e dures can be made to control the type I er- 
ror close to a nominal le vel α. T he versions of these proce- 
dures without futility stoppin g pro vide modest savings in sam- 
ple size while m aintaining c omparable pow er, and the versions 
incorporat ing fut ility stopping provide more savings in s amp le 
size while having hi ghe r powe r tha n the Bonfe rroni -adjus ted, 
n aiv e group se que n tial proc e dure. Our res ults show th at the 
n aiv e, un adjuste d group seque n tial proc e dure is not a vi ab le
option because its type I error probability grossly exc e e ds the 
nomin al lev el, a w e ll- understood phenomenon in many sequen- 
tial and group seque n t ial sett in gs. In pra ctice, when decidin g 
betw e en the Poc ock, O’B rien-Flemin g, and Wan g -Tsiatis v er- 
sions of the proposed pr ocedur es, we r ecommend the Pocock 
boundaries if aggressive early stopping or simplicity of stop- 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae108#supplementary-data
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FIG URE 3 AID S clinical tri al te sting re sults where s o l id dots ind ica te the estima t ed t es t s tatis tic, W E , at each time point t j for w e eks 16, 24, and 

40 (a), and w e eks 8, 16, 24, and 40 (b); a red dashed line (closest to ce n te r) is drawn at ±�−1 (1 − 0 . 05 / 2) = 1 . 96 , a blue dashed line (at 
about 2.5) is drawn at the Bonferroni boundary, a purple dashed line (oute rmos t line) is drawn at the O’Brie n-Fle ming bounda ry, a b l ack 
dashed line (betw e en 1.96 and Bonferroni) is drawn at the Pocock boundary, and a gray dashed line (betw e e n Bonfe rroni a nd oute rmos t line) 
is drawn at the Wang-Tsiatis boundary. 
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ing bound aries (ie, con st ant) is de sire d, the O’B rie n-Fle ming
ounda ries if main taining hi gh powe r is a primary o bj e ctiv e;
therwis e, s ome in stance of the Wang-Tsiatis boundaries can be
hosen as a “middle ground.”
While a m a j or adv a n tage of our proposed a pproa ch is the la ck

f reliance on parametric ass umptions, w e sti l l r equir e a num-
er of as sumption s des cribed in Section 4 . These assumptions
re not unique to our approach; some version of these assump-
ions is ge ne rally r equir ed in surr oga te ma rke r resea rch (Va n-
er We e le, 2013 ). Import antly, we do not claim that these are
epl aci n g p arame tric as sumption s and are less strict. They are
trict as sumption s, and while we can empirically examine some
f these with available data, we ca nnot exa mine or test Assump-

ions (C6) and (C7). Assumption (C6) has some parallels to as-
umption s us ed in domain adaptation (Kouw and Loog, 2019 )
nd Assumption (C7) has some parallels to (though is not equiv-
le n t to) the widely us ed as sumption of no unmeasured con-
ounding in causal infe re nce (Va nde rWeele a nd Arah, 2011 ).
uture work to develop methods to inves ti gate these assump-
ion s vi a simul ation or the con struction of bounds would be
 aluab le. 
The proposed method for calculating the stopping boundaries

f these proc e dures in Section 3.3 re lie s on Assumption (C6)
hich permits est imat in g the co v ari ance structure of the Study B

es t s tatis tics using that from Study A. If Study A does not pro-
ide an accurate estimate of the Study B cov ari ance, an alter-
 ativ e approach m ay be to compute the bound aries ad aptively
sing a type I e rror-spe nding function α(t ) , increasing from
(0) = 0 to α(1) = α. In the context of the group sequen-

ial tests in Section 3.3 with stopping rule ( 13 ), after the ( j −
) s t a n alysis h as be en c omp le ted and d a ta fr om the jth analy-
i s i s av ail ab le, the stopping bound ary b j w ould be c ompute d
o satisfy P (| W E1 | < b 1 , . . . , | W E j−1 | < b j−1 , | W E j | ≥ b j ) =
(t j /t J ) − α(t j−1 /t J ) where this probability is under the null
ypothesi s. Thi s eve n t ca n be sim ul ated vi a Mon te Ca rlo using
 similar approach to ( 17 ) but where Z is length j and ̃

 � is re-
 l ac e d by the j × j lea din g principal s ubm atrix of ̂ �, a func-

ion of the av ail ab le d a ta fr om the first j analyses, producing
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length j v e ctors X whose e n tries h av e the same distribution as
 E1 , W E2 , . . . , W E j under the null. 
While this work is a unique and nov el c ontribution to the field,

the pract ical ut ility of this approach depends immen s ely on the
quality, size, and r epr ese n tative ness of the Study A dat a. Not ably,
our testing framew ork m akes explicit the reliance on Study A
d ata vi a the definition of �E which is defined with the ̂  μA 0 j (s )
term. (How ev er, for c omp le tenes s, we dis cus s our approach with
Study A as random in Web Appendix F .) While it is less com-
mon to see a n es timator within a defined null hypothesi s, thi s
reflects the true use of surr oga tes in practice. It would be unre-
alistic to develop a testing proc e dure and asymptotic results un-
der the ass umption th at n A → ∞ because, in practice, Study A
is ge ne rally not la rge a nd is not s e t b y the desi gne rs of Study B.
When a study team is considering using a surr oga te ma rke r to
test for a tr ea tment effect, they are using information about sur-
r ogacy fr om some pr eviously c omplete d study. To the designers
of Study B, the design is such that this prior Study A is inde e d
fixed. Thi s i s not the same thing as ass uming th a t the r esults of
Study A were “ex act ” or not subject to its own v ari ation, but just
that they they wi l l not change before Study B begins. If Study A
was v ery sm all or not r epr ese n tative or in some way not provid-
ing a reas onab le estimate of μA 0 j (s ) , there is no “magic bullet”
(th at w e know of) th at w ould produc e a le gitim at e t esting proce-
dur e tha t uses the surr oga te as a r ep l ace me n t of the prima ry out-
come, borr owing fr om Study A. Ultim ately, w e admit th at this
is a d iffic ult pro b lem . Surro gate ma rke rs a re impe rfect a nd it is
importa n t for us to be explicit about the reliance of this testing
proc e dure (and more ge ne rally, a ny proc e dure th at uses a surro-
gate ma rke r to rep l ac e the prim ary outc ome) on prior data th at
is being used to assess surrogacy. 
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